用Octave判断间断点的分类(2)
广告
{{v.name}}
(2)跳跃间断点
讨论\( f(x)=\frac{x}{1-e^{\frac{x}{1-x} } } \)在\( x=1 \)处的连续性。
程序代码如下
function [text_result, numeric_result] = func16(x_value)
pkg load symbolic;
x = sym('x');
question = x / (1 - exp(x / (1 - x)));
if ((x_value == 0) || (x_value == 1))
error('Invalid input value.')
endif
lim = limit(question, x, x_value);
text_result = ["\n", disp(lim)];
numeric_result = eval(lim);
endfunction
令\(x \gt 1 ( x = 1.01)\),计算结果如下
>> [text_result, numeric_result] = func16(1.01)
warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
double_to_sym_heuristic at line 50 column 7
sym at line 384 column 13
limit at line 92 column 5
func16 at line 8 column 9
text_result =
101
───────────────
⎛ -101⎞
100⋅⎝1 - ℯ ⎠
numeric_result = 1.0100
令\(x \lt 1 ( x = 0.99)\),计算结果如下
>> [text_result, numeric_result] = func16(0.99)
warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
double_to_sym_heuristic at line 50 column 7
sym at line 384 column 13
limit at line 92 column 5
func16 at line 8 column 9
text_result =
99
─────────────
⎛ 99⎞
100⋅⎝1 - ℯ ⎠
numeric_result = -1.0011e-43
因为\( f(1+0) \ne f(1-0) \),所以\( x=1 \)为\( f(x) \)的跳跃间断点