用Octave计算导数基本公式(4)
广告
{{v.name}}
\( ({\rm log}_a x)' = \frac{1}{x{\rm ln}a } \),特别地,有\( ({\rm ln}x)' = \frac{1}{x} \)
这里将\( {\rm log}_a x \)化为\( \frac{ {\rm ln} x}{ {\rm ln} a} \)。程序代码如下
function [text_result, numeric_result] = func21()
pkg load symbolic;
x = sym('x');
a = sym('a');
question = log(x) / log(a);
lim = diff(question, x);
text_result = ["\n", disp(lim)];
numeric_result = eval(lim);
endfunction
计算结果如下
>> [text_result, numeric_result] = func21()
text_result =
1
────────
x⋅log(a)
numeric_result = (sym)
1
────────
x⋅log(a)