用Octave计算导数基本公式(15)
广告
{{v.name}}
反三角函数求导公式(5)
\( ({\rm arcsec} x )'= \frac{1}{x^2 \cdot \sqrt{1-\frac{1}{x^2} } } \)
程序代码如下
function [text_result, numeric_result] = func32()
pkg load symbolic;
x = sym('x');
question = asec(x);
lim = diff(question, x);
text_result = ["\n", disp(lim)];
numeric_result = eval(lim);
endfunction
计算结果如下
>> [text_result, numeric_result] = func32()
text_result =
1
────────────────
________
2 ╱ 1
x ⋅ ╱ 1 - ──
╱ 2
╲╱ x
numeric_result = (sym)
1
────────────────
________
2 ╱ 1
x ⋅ ╱ 1 - ──
╱ 2
╲╱ x