用Octave求泰勒展开(4)
广告
{{v.name}}
常见麦克劳林展开式(4)
\(\frac{1}{1-x}=1+x+\cdots+x^{n}+o(x^{n})\)
求\(\frac{1}{1-x}\)的泰勒展开.
程序代码如下
function [text_result, numeric_result] = func42(order)
pkg load symbolic;
x = sym('x');
question = 1 / (1 - x);
d = taylor(question, 'order', order + 1);
text_result = ["\n", disp(d)];
numeric_result = eval(d);
endfunction
计算5阶泰勒展开,结果如下
>> [text_result, numeric_result] = func42(5)
text_result =
5 4 3 2
x + x + x + x + x + 1
numeric_result = (sym)
5 4 3 2
x + x + x + x + x + 1
计算10阶泰勒展开,结果如下
>> [text_result, numeric_result] = func42(10)
text_result =
10 9 8 7 6 5 4 3 2
x + x + x + x + x + x + x + x + x + x + 1
numeric_result = (sym)
10 9 8 7 6 5 4 3 2
x + x + x + x + x + x + x + x + x + x + 1