用Octave求泰勒展开(5)
广告
{{v.name}}
常见麦克劳林展开式(5)
\(\frac{1}{1+x}=1-x+x^{2}-\cdots+-1^{n}x^{n}+o(x^{n})\)
求\(\frac{1}{1+x}\)的泰勒展开.
程序代码如下
function [text_result, numeric_result] = func43(order)
pkg load symbolic;
x = sym('x');
question = 1 / (1 + x);
d = taylor(question, 'order', order + 1);
text_result = ["\n", disp(d)];
numeric_result = eval(d);
endfunction
计算5阶泰勒展开,结果如下
>> [text_result, numeric_result] = func43(5)
text_result =
5 4 3 2
- x + x - x + x - x + 1
numeric_result = (sym)
5 4 3 2
- x + x - x + x - x + 1
计算10阶泰勒展开,结果如下
>> [text_result, numeric_result] = func43(10)
text_result =
10 9 8 7 6 5 4 3 2
x - x + x - x + x - x + x - x + x - x + 1
numeric_result = (sym)
10 9 8 7 6 5 4 3 2
x - x + x - x + x - x + x - x + x - x + 1