用Octave求泰勒展开(9)
广告
                        {{v.name}}
常见麦克劳林展开式(9)
\({\rm arctan}x=x-\frac{x^{3} }{3}+\frac{x^{5} }{5}-\cdots+\frac{(-1)^{n} }{2n+1}x^{2n+1}+o(2n+1)\)
求\({\rm arctan}x\)的泰勒展开.
                    程序代码如下
                    function [text_result, numeric_result] = func47(order)
    pkg load symbolic;
    x = sym('x');
    question = atan(x);
    d = taylor(question, 'order', order + 1);
    text_result = ["\n", disp(d)];
    numeric_result = eval(d);
endfunction计算5阶泰勒展开,结果如下
                    >> [text_result, numeric_result] = func47(5)
text_result =
     5    3
    x    x
    ── - ── + x
    5    3
numeric_result = (sym)
     5    3
    x    x
    ── - ── + x
    5    3计算10阶泰勒展开,结果如下
                    >> [text_result, numeric_result] = func47(10)
text_result =
     9    7    5    3
    x    x    x    x
    ── - ── + ── - ── + x
    9    7    5    3
numeric_result = (sym)
     9    7    5    3
    x    x    x    x
    ── - ── + ── - ── + x
    9    7    5    3