用Octave计算不定积分基本性质(1)
广告
{{v.name}}
不定积分基本性质(1) \(\int{[f(x)\pm g(x)]}{\rm d}x=\int{f(x)}{\rm d}x\pm \int{g(x)}{\rm d}x\)
求\( f(x)=\int{[{\rm sin}(x)+ {\rm cos}(x)]}{\rm d}x\),
\( g(x)=\int{ {\rm sin}(x)}{\rm d}x\),
\( h(x)=\int{ {\rm cos}(x)}{\rm d}x\).
程序代码如下
function [text_result, numeric_result] = func53()
    pkg load symbolic;
    x = sym('x');
    f = int(sin(x) + cos(x));
    g = int(sin(x));
    h = int(cos(x));
    text_result = ["\nf=", disp(f), "\ng=", disp(g), "\nh=", disp(h)];
    numeric_result = [eval(f), eval(g), eval(h)];
endfunction
结果如下
>> [text_result, numeric_result] = func53()
text_result =
f=  sin(x) - cos(x)

g=  -cos(x)

h=  sin(x)

numeric_result = (sym) [sin(x) - cos(x)  -cos(x)  sin(x)]  (1×3 matrix)
可见\(f(x)=g(x)+h(x)\).
友链