用Octave计算不定积分基本性质(1)
广告
{{v.name}}
不定积分基本性质(1) \(\int{[f(x)\pm g(x)]}{\rm d}x=\int{f(x)}{\rm d}x\pm \int{g(x)}{\rm d}x\)
求\( f(x)=\int{[{\rm sin}(x)+ {\rm cos}(x)]}{\rm d}x\),
\( g(x)=\int{ {\rm sin}(x)}{\rm d}x\),
\( h(x)=\int{ {\rm cos}(x)}{\rm d}x\).
程序代码如下
function [text_result, numeric_result] = func53()
pkg load symbolic;
x = sym('x');
f = int(sin(x) + cos(x));
g = int(sin(x));
h = int(cos(x));
text_result = ["\nf=", disp(f), "\ng=", disp(g), "\nh=", disp(h)];
numeric_result = [eval(f), eval(g), eval(h)];
endfunction
结果如下
>> [text_result, numeric_result] = func53()
text_result =
f= sin(x) - cos(x)
g= -cos(x)
h= sin(x)
numeric_result = (sym) [sin(x) - cos(x) -cos(x) sin(x)] (1×3 matrix)
可见\(f(x)=g(x)+h(x)\).