用Octave求不定积分基本公式(4)
广告
{{v.name}}
不定积分基本公式(4) \(\int{a^{x} }{\rm d}x=\frac{a^{x} }{ {\rm ln}a }+C\),特别地,\(\int{ {\rm e}^{x} }{\rm d}x={\rm e}^{x}+C\)
求\(\int{2^{x} }{\rm d}x\).
程序代码如下
function [text_result, numeric_result] = func58()
    pkg load symbolic;
    x = sym('x');
    f = int(2^x, x);
    text_result = ["\n", disp(f)];
    numeric_result = eval(f);
endfunction
结果如下
>> [text_result, numeric_result] = func58()
warning: passing floating-point values to sym is dangerous, see "help sym"
warning: called from
    double_to_sym_heuristic at line 50 column 7
    sym at line 384 column 13
    rdivide at line 105 column 5
    ldivide at line 56 column 5
    mldivide at line 95 column 7
    mrdivide at line 72 column 5
    function_handle>@<anonymous> at line 1 column 10
    eval at line 101 column 7
    func58 at line 6 column 20

text_result =
        x
       2
    ──────
    log(2)

numeric_result = (sym)

         x
    2291⋅2
    ───────
     1588
友链