用Octave计算若干项之积的极限
广告
{{v.name}}
计算\(\displaystyle\lim_{n \to \infty} \prod_{m=2}^{n} \frac{m^3 - 1}{m^3 + 1}\)
程序代码如下
function [text_result, numeric_result] = func6(n_value)
pkg load symbolic;
m = sym('m');
n = sym('n');
unit = (m^3 - 1) / (m^3 + 1);
question = symprod(unit, m, [2, n]);
lim = limit(question, n, n_value);
text_result = ["\n", disp(lim)];
numeric_result = eval(lim);
endfunction
令\(n \to \infty\),计算结果如下
>> [text_result, numeric_result] = func6(inf)
text_result =
⎛3 √3⋅ⅈ⎞ ⎛3 √3⋅ⅈ⎞
2⋅Γ⎜─ - ────⎟⋅Γ⎜─ + ────⎟
⎝2 2 ⎠ ⎝2 2 ⎠
─────────────────────────
⎛5 √3⋅ⅈ⎞ ⎛5 √3⋅ⅈ⎞
Γ⎜─ - ────⎟⋅Γ⎜─ + ────⎟
⎝2 2 ⎠ ⎝2 2 ⎠
numeric_result = 0.6667