用Octave求不定积分基本公式(20)
广告
{{v.name}}
不定积分基本公式(20) \(\int{ \frac{1}{\sqrt{x^2-a^2} } }{\rm d}x={\rm ln}\lvert x+\sqrt{x^2-a^2}\rvert+C\)
求\(\int{ \frac{1}{\sqrt{x^2-a^2} } }{\rm d}x\).
程序代码如下
function [text_result, numeric_result] = func74()
    pkg load symbolic;
    x = sym('x');
    a = sym('a');
    f = int(1 / sqrt(x^2 - a^2), x);
    text_result = ["\n", disp(f)];
    numeric_result = eval(f);
endfunction
结果如下
>> [text_result, numeric_result] = func74()
text_result =
    ⎧                 │ 2│
    ⎪      ⎛x⎞       │x │
    ⎪ acosh⎜─⎟   for │──│ > 1
    ⎪      ⎝a⎠       │ 2│
    ⎨                 │a │
    ⎪
    ⎪       ⎛x⎞
    ⎪ -ⅈ⋅asin⎜─⎟   otherwise
    ⎩       ⎝a⎠

numeric_result = (sym)

    ⎧                 │ 2│
    ⎪      ⎛x⎞       │x │
    ⎪ acosh⎜─⎟   for │──│ > 1
    ⎪      ⎝a⎠       │ 2│
    ⎨                 │a │
    ⎪
    ⎪       ⎛x⎞
    ⎪ -ⅈ⋅asin⎜─⎟   otherwise
    ⎩       ⎝a⎠
友链