用Octave求三重积分
广告
{{v.name}}
设\(\Omega=\{(x, y, z)|(x, y)\in D, (x+y)\leq z\leq (x+y)^3\}\),设\(D=\{(x, y)|1\leq x\leq10, {\rm ln}x\leq y\leq x^3\}\),求\(\iiint_{\Omega}{(x^2+y^2+z^2)}{\rm d}x{\rm d}y{\rm d}z\).
程序代码如下
function [text_result, numeric_result] = func82()
pkg load symbolic;
x = sym('x');
y = sym('y');
z = sym('z');
result = x^2 + y^2 + z^2;
% result = int(result, z, log(x + y), (x + y)^3);
result = int(result, z, x + y, (x + y)^3);
result = int(result, y, log(x), x^3);
result = int(result, x, 1, 10);
text_result = ["\n", disp(result)];
numeric_result = eval(result);
endfunction
结果如下
>> [text_result, numeric_result] = func82()
text_result =
2 3 4 5 ↪
4783622525525⋅log (10) 399208553515591⋅log(10) 50763562495⋅log (10) 487172945⋅log (10) 11206060⋅log (10) ↪
- ────────────────────── - ─────────────────────── - ──────────────────── - ────────────────── - ───────────────── ↪
31752 1333584 1134 54 9 ↪
↪ 6 7 9 10 ↪
↪ 1136185⋅log (10) 26180⋅log (10) 8 40⋅log (10) log (10) 11846982568338335428134810034100 ↪
↪ - ──────────────── - ────────────── - 455⋅log (10) - ─────────── - ───────── + ──────────────────────────────── ↪
↪ 9 3 3 3 990608372850096000 ↪
↪
↪ 255843899376745277
↪ ──────────────────
↪ 000
numeric_result = 1.1959e+28