用Octave计算矩阵分配律(3)
广告
                        {{v.name}}
矩阵分配律:\(A(B+C)=AB+AC\)
                    计算\( \left[ \begin{array}{ccc}
    1 & 2 \\
    3 & 4
\end{array} \right] \left( \left[ \begin{array}{ccc}
    5 & 6 \\
    7 & 8
\end{array} \right] + \left[ \begin{array}{ccc}
    5 & 6 \\
    7 & 8
\end{array} \right] \right) \)和\( \left[ \begin{array}{ccc}
    1 & 2 \\
    3 & 4
\end{array} \right] \left[ \begin{array}{ccc}
    5 & 6 \\
    7 & 8
\end{array} \right] + \left[ \begin{array}{ccc}
    1 & 2 \\
    3 & 4
\end{array} \right] \left[ \begin{array}{ccc}
    5 & 6 \\
    7 & 8
\end{array} \right] \)
                    程序代码如下
                    >> [1 2; 3 4] * ([5 6; 7 8] + [5 6; 7 8])
ans =
    38    44
    86   100
>> [1 2; 3 4] * [5 6; 7 8] + [1 2; 3 4] * [5 6; 7 8]
ans =
    38    44
    86   100