用Octave计算矩阵分配律(4)
广告
                        {{v.name}}
矩阵分配律:\((A+B)C=AC+BC\)
                    计算\( \left( \left[ \begin{array}{ccc}
    1 & 2 \\
    3 & 4
\end{array} \right] + \left[ \begin{array}{ccc}
    5 & 6 \\
    7 & 8
\end{array} \right] \right) \left[ \begin{array}{ccc}
    5 & 6 \\
    7 & 8
\end{array} \right] \)和\( \left[ \begin{array}{ccc}
    1 & 2 \\
    3 & 4
\end{array} \right] \left[ \begin{array}{ccc}
    5 & 6 \\
    7 & 8
\end{array} \right] + \left[ \begin{array}{ccc}
    5 & 6 \\
    7 & 8
\end{array} \right] \left[ \begin{array}{ccc}
    5 & 6 \\
    7 & 8
\end{array} \right] \)
                    程序代码如下
                    >> ([1 2; 3 4] + [5 6; 7 8]) * [5 6; 7 8]
ans =
    86   100
   134   156
>> [1 2; 3 4] * [5 6; 7 8] + [5 6; 7 8] * [5 6; 7 8]
ans =
    86   100
   134   156