用Octave计算矩阵结合律(1)
广告
{{v.name}}
矩阵结合律:\((A+B)+C=A+(B+C)\)
计算\( \left( \left[ \begin{array}{ccc} 1 & 2 \\ 3 & 4 \end{array} \right] + \left[ \begin{array}{ccc} 5 & 6 \\ 7 & 8 \end{array} \right] \right) + \left[ \begin{array}{ccc} 5 & 6 \\ 7 & 8 \end{array} \right]\)和\( \left[ \begin{array}{ccc} 1 & 2 \\ 3 & 4 \end{array} \right] + \left( \left[ \begin{array}{ccc} 5 & 6 \\ 7 & 8 \end{array} \right] + \left[ \begin{array}{ccc} 5 & 6 \\ 7 & 8 \end{array} \right] \right)\)
程序代码如下
>> ([1 2; 3 4] + [5 6; 7 8]) + [5 6; 7 8]
ans =

   11   14
   17   20
>> [1 2; 3 4] + ([5 6; 7 8] + [5 6; 7 8])
ans =

   11   14
   17   20
友链